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In several recent applications, including those aimed at developing thermal interface materials, nanoparticu-
late systems have been proposed to improve the effective behavior of the system. While nanoparticles by
themselves may have low conductivities relative to larger particles owing to interfacial resistance, their use
along with larger particles is believed to enhance the percolation threshold leading to better effective behavior
overall. One critical challenge in using nanoparticulate systems is the lack of knowledge regarding their
thermal conductivity. In this paper, the thermal conductivity of silica clusters �or nanoparticles� as well as
nanowires is determined using molecular dynamics �MD� simulations. The equilibrium MD simulations of
nanoparticles using Green-Kubo relations are demonstrated to be computationally very expensive and unsuit-
able for such nanoscaled systems. A nonequilibrium MD method adapted from the study of Müller-Plathe is
shown to be faster and more accurate. The method is first demonstrated on bulk amorphous silica �using both
cubic and orthorhombic simulation cells� and silica nanowires. The thermal conductivity values are compared
to those reported in the literature. The mean thermal conductivity values for bulk silica and silica nanowire
were estimated to be 1.2 W/mK and 1.435 W/mK, respectively. To model nanoparticles, the Müller-Plathe
technique is adapted by dividing the cluster into concentric shells so as to capture the naturally radial mode of
heat transfer. The mean thermal conductivity value of a 600-atom silica nanoparticle obtained using this
approach was 0.589 W/mK. This value is �50–60 % lower than those of bulk silica or silica nanowire.

DOI: 10.1103/PhysRevE.76.056701 PACS number�s�: 02.70.Ns, 66.70.�f, 65.80.�n, 05.60.Cd

I. INTRODUCTION

The promise of molecular dynamics �MD� simulations is
their potential to determine physical and mechanical proper-
ties of materials at nanoscale beginning with the appropriate
force fields. One such class of properties that studies in the
literature have attempted to determine through MD simula-
tions is the transport coefficients of bulk solids and fluids
�1,2�. The particular transport property of interest in the
present paper is the thermal conductivity. Determination of
thermal conductivity using MD simulations is a challenging
task. In the existing literature, different MD techniques have
been used to estimate the transport coefficients of solids and
fluids including equilibrium MD using Green-Kubo relations
�1–4�, direct nonequilibrium MD �1,5�, and the method of
Müller-Plathe �6,7�. These approaches differ in the manner in
which they determine the energy current and/or heat current
and hence the manner in which they determine the transport
properties. The Green-Kubo method allows one to extract
transport properties while carrying out the simulation at
equilibrium. It has been shown to be reliable and accurate for
many fluid as well as solid systems such as Lennard-Jones
�LJ� argon �8�, �-silicon carbide �9�, diamond �10�, and sili-
con �5,11�. The direct nonequilibrium MD simulations,
which are analogous to experimental measurement, were
used in Refs. �5,12� to estimate the thermal conductivity of
bulk systems. In the technique developed by Müller-Plathe

�6�, the simulation cell is divided into slabs along a chosen
direction and a linear heat transport process is imposed along
the chosen direction. The method has been demonstrated for
bulk fluidic systems �6,7�.

In a discussion relating to the use of MD simulations to
study thermal transport in solids, Tien et al. �13� suggested
that the cell sizes would need to be large for accurate simu-
lation of bulk systems since in such systems more long-
wavelength phonon modes can be sustained. They also sug-
gested that calculation of thermal conductivity from an
analysis of fluctuations of a system at equilibrium �such as
using Green-Kubo relations� would require significantly
more computational effort than nonequilibrium simulations.

A significant fraction of MD simulations published in the
literature are on bulk materials. We cite references
�1,2,5,8–12,14–16� pertaining to estimation of thermal con-
ductivity as examples of such studies on bulk materials. In
general, finite-size effects have been considered in relatively
few studies �10,11,16,17�. In Ref. �17� the finite-size effects
on properties such as intermediate scattering function and
mean square displacements were estimated. Reference �16�
appears to be one of very few studies to focus on nanowires;
in the study, the authors estimated the thermal conductivity
of a carbon nanotube �CNT� through equilibrium MD
simulations.

Often, there is a lack of clarity as to whether the finite-
size effects arise out of boundary conditions on the simula-
tion cell �such as periodic boundary conditions� or due to
phenomena influenced by the physical size of the system.
Furthermore, few studies appear to have developed proce-*ganeshs@purdue.edu
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dures to estimate the thermal conductivity of nanoparticles.
Also, there do not appear to be any studies that have system-
atically prepared amorphous nanowire and nanoparticle sys-
tems and determined their thermal conductivity. In general, a
methodology that is developed for amorphous systems would
be equally valid for crystalline systems as well, but the con-
verse may not be true. Moreover, amorphous particles, wires,
and films are themselves of interest due to their applications
in microelectronics.

In this paper, we first develop MD procedures for prepar-
ing amorphous nanowire and nanoparticle systems from
crystalline initial states �Sec. II�. We apply the procedure to
carry out MD simulations of silica nanowire and nanopar-
ticle systems. We begin by estimating the thermal conductiv-
ity of a silica nanoparticle using the Green-Kubo equilibrium
simulations �Sec. III�. Through these simulations we demon-
strate the challenges to estimating the thermal conductivity
of a freestanding cluster �or nanoparticle�. Although the
Green-Kubo technique is common, it is shown here that in
order to estimate cluster conductivity accurately using the
technique, the simulations need to run for a significantly
longer period of time. We next apply the procedure devel-
oped by Müller-Plathe �6� to estimating the thermal conduc-
tivity of bulk silica �Sec. IV� and silica nanowire �Sec. V�.
We then develop a procedure inspired by the Müller-Plathe
approach to estimate the thermal conductivity of a silica
nanoparticle �Sec. VI�. We discuss the thermal conductivity
values obtained for the nanoparticle �Sec. VII� and summa-
rize the results �Sec. VIII�.

II. PROCEDURE FOR PREPARING BULK, NANOWIRE,
AND NANOPARTICLE SIMULATION SYSTEMS

As the aim of the present study is to determine the ther-
mal conductivity, it is important to identify the appropriate
potential that accurately captures the transport behavior. In
general, a potential capable of capturing good dynamical be-
havior and thermal properties is needed. Of the different po-
tentials proposed for silica �18�, the one proposed by van
Beest, Kramer, and van Santen �BKS� �19� was used here.
The BKS potential was developed through a mixture of ab
initio calculations and classical lattice dynamic simulations
�19�. It has been shown to predict the various static and
dynamic properties such as structure �20�, specific heat �21�,
radial distribution function, �22� and thermal conductivity
�12� within reasonable accuracy for bulk silica polymorphs.
The lack of restrictive assumptions in deriving the potential
and the ability of the potential to predict the static and dy-
namic properties make it a suitable choice in this study. The
BKS potential has the added computational advantage of be-
ing a two-body potential. In the BKS potential, the interac-
tion between two ions i and j that are separated by a distance
rij is given by

V�rij� =
qiqj

rij
+ Aij exp�− Bijrij� −

Cij

rij
6 , �1�

where q is an atomic charge and Aij, Bij, and Cij are con-
stants specified for the particular types of atoms i and j. The
values for the parameters used in the present study were the

same as those used by van Beest et al. �19,23�: ASiSi

=0.0 eV, ASiO=18 003.7572 eV, AOO=1388.7730 eV, BSiSi
=0.0 Å−1, BSiO=4.873 18 Å−1, BOO=2.760 Å−1, CSiSi

=0.0 eV Å6, CSiO=133.5381 eV Å6, COO=175.00 eV Å6,
qSi=2.4, and qO=−1.2. The BKS potential is composed of
two main contributions, one being the long-ranged Coulom-
bic electrostatic interactions �the first term in Eq. �1�� and the
second being the short-ranged attractive and repulsive inter-
actions �second and third terms in Eq. �1��. To calculate the
contribution due to the Coulombic term, commonly the
Ewald sum �1� method is used. In this method, the interac-
tion energy due to the Coulombic term is reorganized as a
summation of a real space term and a reciprocal space
�k-space� term. This accounts for the interaction between an
ion and all its periodic images �1,2�. The main drawback of
the method is its high computational expense. Recently Wolf
et al. �24� proposed a method to calculate these long-ranged
electrostatic interactions in a computationally efficient man-
ner without sacrificing accuracy. In this approach, the first
term in Eq. �1� is calculated as

qiqj

rij
�

qiqj erfc��rij�
rij

. �2�

In the simulations presented in the paper, when the Ewald
technique was used to determine the electrostatic interac-
tions, the contribution from the long-ranged terms �k-space
contributions� to the total potential was found to be negli-
gible �less than 0.1%�, as was also reported in �14�. Also, it
was found that for the particular values of the parameter �
and cutoff radius �as suggested by Wolf et al. �24��, the re-
sults obtained using Eq. �2� were in close agreement with
those obtained using the Ewald method. Such a behavior has
been studied and reported earlier �14,25�. The parameter � is
a damping parameter and by choosing it appropriately, the
electrostatic interactions are made short ranged. Demontis et
al. �25� suggest a value of � equal to 4Lmin, where Lmin is the
smallest simulation cell dimension. They showed that this
value of � yields a close agreement to the full Ewald sum in
many types of systems. Therefore, in the simulations de-
scribed in this paper, the value of � was chosen as 4Lmin,
which was equal to 0.192 Å−1 for cubic simulation cells. The
same value of � was used in nanowire and nanoparticle
simulations.

The BKS potential as given in Eq. �1� has been found to
yield satisfactory property values for bulk materials
�12,20–23�. But, its validity for simulating silica clusters �in
which there are no periodic boundary conditions� is unclear.
Indeed, when the BKS potential was used in the form shown
in Eq. �1�, the simulations did not converge. During the
simulations, to create the amorphous state, the system was
heated initially to liquid state and then quenched to achieve
the amorphous solid state. During this process, the atoms
approach each other closely. In these situations, the BKS
potential does not effectively handle the resulting repulsive
forces �14,26�. Hence, to ensure cohesion during the quench
process, a 24-6 LJ potential was added to the BKS potential
�27�, as shown in Eq. �3� below,
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V�rij� =
qiqj

rij
+ Aij exp�− Bijrij� −

Cij

rij
6

+ 4�ij���ij

rij
	24

− ��ij

rij
	6
 . �3�

The values for the parameters �ij and �ij were the same as
those used by Guissani et al. �27�: �SiSi=1219.45 kJmol,
�SiO=1.083 kJmol, and �OO=0.0344 kJmol; �SiSi=0.42 Å,
�SiO=1.31 Å, and �OO=2.20 Å.

In this paper, all simulated systems consisted of 600 at-
oms. Since the density of amorphous silica was chosen as
2200 kg/m3, the dimensions of the cubic simulation cell
were calculated to be 20.86 Å�20.86 Å�20.86 Å. The
equations of motion were integrated using the velocity form
of the Verlet algorithm �1,2�. The time step used was 1.0 fs.
To prepare the amorphous state, the system was heated at
5000 K so as to reach a liquid state �17,18� over approxi-
mately 50000 steps. At this temperature, in the resulting liq-
uid state, all information regarding the initial position was
lost and the result was a truly disordered liquid state �18�.
This liquid was then quenched in steps of 100 K to room
temperature �300 K� to form the solid state. When periodic-
ity was not applied �e.g., during nanoparticle simulations�,
the atoms were restrained initially by a spherical potential as
discussed by Roder et al. �26�. The form of the potential that
was used was Vw�ri�= �Rw−ri�12, where ri is distance of par-
ticle i from the origin. This potential was used only during
equilibration for the initial �10% of the steps and discarded
afterwards. Hence, it did not contribute to the system prop-
erties in the final equilibrated state and the subsequent pro-
duction runs �26�. It has been reported that the cooling rate
affects various properties of amorphous silica �23�. In a pre-
vious study by Jund and Jullien �12� on thermal conductivity
of bulk vitreous silica, a very high cooling rate of 2.3
�1014 K/s was used. Although the exact effect of the cool-
ing rate on thermal conductivity is not clear, here, a much
lower cooling rate is used, so as to ensure that cooling rate
�equal to 4.7�1012 K/s—two orders of magnitude lower
than that of Jund and Jullien� does not influence the results.
Note that this value is still much higher than the cooling rates
that are typical in physical experiments. On the other hand,
the time scales of physical experiments are also larger than
the typical time scales of MD simulations �23� �in pico-to-
nanoseconds�. This cooling rate amounts to cooling over
1000000 time steps �1 ns�. The cooled system was then al-
lowed to relax further at room temperature �300 K� for
1000000 more steps in the NVT ensemble using the Ander-
sen thermostat �2,28�. The systems equilibrated using this
procedure were used in the production runs in the NVE en-
semble, from which data were recorded for all the simula-
tions described in this paper.

Figure 1 shows such equilibrated silica nanowire and
nanoparticle systems. The larger �dark or blue-colored� par-
ticles are Si atoms and the smaller �light or green-colored�
particles are O atoms. In order to ascertain that the structure
of the system being simulated is that of silica, radial distri-
bution functions �RDFs� were determined. Figure 2 shows
RDFs of the equilibrated silica nanowire and nanoparticle

systems shown in Fig. 1. The peaks in these radial distribu-
tion functions agree accurately with those obtained in the
literature �22,23� for bulk amorphous silica using MD simu-
lations.

III. GREEN-KUBO SIMULATIONS FOR ESTIMATING
THERMAL CONDUCTIVITY OF A NANOPARTICLE

A. Background

Transport by its very name implies movement of matter
and/or energy and hence dilution of a system in steady state
�i.e., equilibrium�. Hence, determination of transport proper-
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FIG. 1. �Color online� Equilibrated systems consisting of 600
atoms �200 SiO2 formula units�: �a� silica nanowire and �b� silica
nanoparticle. The larger �dark or blue-colored� dots represent Si
atoms and the smaller �light or green-colored� dots represent O
atoms.
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ties from equilibrium MD may seem counterintuitive. But,
the properties of the system show fluctuations at equilibrium
and these fluctuations can be used to determine the desired
properties. This is made possible through linear response
theory by using relations proven by Green-Kubo �3,4� or
alternatively �and equivalently� by Einstein �1,2�. Transport
coefficients are defined in terms of the response of the sys-
tem to perturbations, and the fluctuations in properties are
considered as perturbations from equilibrium values. The
transport coefficient is determined through an integral in-
volving the autocorrelation function. This usually requires
the infinite time integration of equilibrium correlation func-
tions as

� = �
0

�

�Ȧ�t�Ȧ�0�dt , �4�

where � is the transport coefficient and A is the variable
related to the perturbation.

Green-Kubo relations have been derived for many trans-
port coefficients such as diffusivity, shear viscosity, and ther-
mal conductivity. The expression for thermal conductivity
involves the autocorrelation function of energy current as
given below:

	 =
1

VkBT2�
0

�

�jz
e�t�jz

e�0�dt , �5a�

jz
e =

d

dt
�
i=1

N

zi
1

2�mivi
2 + �

j�i

E�rij�	 , �5b�

where 	 is the thermal conductivity and jz
e is the z component

of the energy current; N is the number of particles in the
system, mi is mass of particle i, zi is the z component of the
position vector of particle i, vi�t� is velocity of particle i at
time t, E�rij� is the potential function governing the system,
and kB is the Boltzmann’s constant.

The equilibrium averages and correlation functions are
calculated using the positions and momenta of the particles.
The Green-Kubo expression given in Eq. �5a� for thermal
conductivity is ensemble dependent and is valid for the mi-
crocanonical �NVE� ensemble. It is sometimes desirable to
perform the simulations at constant temperature, in the ca-
nonical �NVT� ensemble. The expression for thermal con-
ductivity in the NVT ensemble is �29,30�

	 =
1

VkBT2�
0

�

�jz
q�t�jz

q�0�dt , �6a�

jz
q�t� = jz

e�t� −
�e + P�

N
�

i
viz�t� , �6b�

where e is the energy density, P is the pressure in the system,
and viz is the velocity of particle i in the z direction. The
difference between Eqs. �5a� and �6a� is the quantity whose
correlation function is being determined. In Eq. �5a� it is the
energy current �jz

e�, whereas in Eq. �7� it is the heat current
�jz

q�. The relationship between the two is given in Eq. �6b�.
The correlation function can be determined by at least two

different approaches. In the direct approach, the quantity is
averaged over the number of time steps for which data are
recorded. The value for the quantity in the correlation func-
tion �e.g., energy current� is averaged using the overlapping
method �1,5�, in which to determine the property at each
time, data from all the other time steps are used. There is an
alternative method to using the direct approach for calculat-
ing the correlation function. Since efficient algorithms are
available for carrying out discrete Fourier transforms, it is
possible to use them to determine the correlation functions
efficiently with the application of the convolution/correlation
theorem. In this method, the calculations are performed in
the frequency domain instead of the time domain and Fourier
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FIG. 2. Radial distribution functions of systems shown in Fig. 1:
�a� silica nanowire and �b� silica nanoparticle.
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transforms of the desired quantity �e.g., energy current� are
used. The details regarding both the approaches can be found
in the references �1,5�. In this paper, the direct approach was
used to determine the energy current correlation function
from which the thermal conductivity was obtained after in-
tegration using Eq. �5a�.

B. Results

The simulation of the nanoparticle system, equilibrated as
described in Sec. II, was further continued over 2�106 steps
�2 ns� of production run. The data in these 2�106 steps were
used to calculate the energy current correlation function
�ECACF�. The values of the energy current were recorded
once every five time steps. Though the recorded data covered
all 2�106 steps, the thermal conductivity value was deter-
mined using only the first 4�104 steps so as to obtain good
statistical averaging �5,14�. The normalized ECACF that was
obtained through the simulations is inset in Fig. 3. The por-
tion of the ECACF over the initial four picoseconds is shown
magnified in Fig. 3. The energy current was averaged over
all three coordinate directions. It can be seen that the func-
tion does not decay exponentially during the initial stages of
the simulation, but instead drops abruptly toward zero and
continues to oscillate around the value of zero. Such a be-
havior was observed in bulk silica simulations in the litera-
ture �14�. Similar oscillations were observed during simula-
tions of diamond �10� and were attributed to the relative
motion of bonded atoms with different masses �10,14�. How-
ever, such a behavior was also observed in germanium clath-
rate structures �15� even though the system was composed of
only one element. In all of these cases, it was observed dur-
ing simulations of amorphous structures that the ECACF
drops rapidly to zero and then oscillates around zero with a
decaying envelope �15�.

Theoretically, one expects that the ECACF will decay ex-
ponentially to zero in the infinite time limit. But, due to finite
simulation times, there always remain, in general, some fluc-
tuations around zero. The fluctuations in the case of silica

clusters make it difficult to obtain a converged value of ther-
mal conductivity after integration. For simulations of bulk
silica polymorphs, studies have attempted to overcome this
problem by performing selective averaging �14�. For other
materials such as diamond �10�, carbon nanotube �16�, and
crystalline �-SiC �9�, the approach followed was to fit an
exponential curve to the ECACF and integrating the fit over
time to determine the conductivity. In the present study, the
estimated thermal conductivity of silica clusters obtained af-
ter integration of ECACF displayed a much greater fluctua-
tion over time to effectively apply any of the strategies out-
lined above.

The thermal conductivity obtained by direct integration of
the ECACF is shown in Fig. 4. Since the nanoparticle is
amorphous, the thermal conductivity is ideally the average of
the conductivity values in all three coordinate directions.
This averaged value determined using a simulation time of
40 ps is shown as an inset in Fig. 4. The main plot in the
figure illustrates the oscillations about the mean over the
initial four picoseconds. It can be observed that the conduc-
tivity estimate diverged after oscillating around a mean value
during the initial time steps. The amplitude of the fluctua-
tions around the mean value was observed to vary by about
one or two orders of magnitude.

The bulk conductivity of amorphous silica determined by
both experiments and MD simulations has been reported pre-
viously in the literature �12,14,31�. The experimental value
at 300 K was 1.4 W/mK �31�. The value obtained using
MD simulations through the Green-Kubo relation was
1.96 W/mK �14� and the value obtained using nonequilib-
rium MD by Jund and Jullien �12� was 1.2 W/mK. To the
best of our knowledge, the thermal conductivity of silica
nanoparticles has not been reported in the literature previ-
ously. Hence, the estimates of the thermal conductivity of
bulk silica from the above cited literature are used as a basis
for comparison against the thermal conductivity estimates
obtained in this study. However, it is to be expected that the
thermal conductivity of a nanoparticle would be of lower
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value owing to the size of the particle relative to the phonon
wavelength. Clearly, the extent of fluctuations in thermal
conductivity shown in Fig. 4 makes it difficult if not impos-
sible to determine an unambiguous value of thermal conduc-
tivity. Perhaps an important factor that contributed to the
observed behavior is the length of the simulation. The reason
for this is as follows: to calculate the autocorrelation function
at any time t, the values of the energy current function at all
simulation steps are used �1,5�. Thus, the length of the simu-
lation run affects the value of the thermal conductivity esti-
mated at any time in Fig. 4. Though Eq. �5� is theoretically
valid only when t→�, only finite simulation times are pos-
sible in practice. But, the smallest simulation time that yield
accurate estimates of thermal conductivity from equilibrium
MD simulations are difficult to estimate. For instance, based
on the simulations presented here, we estimate that the
length of the simulation needed to achieve fewer fluctuations
in the energy current correlation function and the resulting
thermal conductivity would be at least 10 times longer than
the one used here. This observation is consistent with the
earlier stated comment by Tien et al. �13� on the likely re-
quirements of equilibrium MD simulations. Increasing the
simulation time increases the computational expense tremen-
dously. However, even if longer simulations were to be per-
formed, the Green-Kubo approach may be inappropriate for
nanoscaled systems. The size of such systems would likely
prevent the persistent transport of the energy flux, and hence,
the applicability of ECACF is unclear. Therefore, as an al-
ternative to the high computational expense and inapplicabil-
ity �to nanoparticle systems� of the Green-Kubo simulations,
a relatively inexpensive and yet accurate technique for deter-
mining the thermal conductivity is needed. One such alter-
native inspired by the Müller-Plathe �6� technique is de-
scribed in the next section.

IV. NONEQUILIBRIUM SIMULATIONS OF BULK SILICA

A. Background

When the temperature across a system is perturbed in a
particular direction, a heat flux through the system results in
that direction. The relation between the temperature gradient
and the resulting heat flux is the thermal conductivity, which
is an inherent property of the system. This macroscopic
relation is the Fourier law of heat conduction,

J� = − 	�T , �7�

where �T is the temperature gradient, J� is the heat flux vec-
tor which is defined as the amount of heat transferred per
unit time through unit area perpendicular to the direction of
the flux, 	 is the thermal conductivity and in general is a
second order tensor. If we consider a simple one-dimensional
case with a temperature gradient dT /dz in the z direction,
then 	 is scalar. Further if the material is isotropic, the con-
ductivity value is same in all directions. From Eq. �7� we
observe that the conductivity may be estimated in two ways:
�i� impose a temperature gradient on the system and deter-
mine the resulting heat flux and �ii� induce a heat flux in the
system and measure the consequent temperature gradient. In

physical experiments, the former method of imposing tem-
perature gradient is most common. Similar applications of
temperature gradient are also common in MD simulations.
However, in MD simulations it has been observed that when
a temperature gradient is imposed, the heat flux often exhib-
its large fluctuations and converges very slowly �6,7�. This
issue of fluctuations is similar to the problem of oscillations
in ECACF described in Sec. III earlier. Hence, it is challeng-
ing to accurately calculate the resulting flux due to an im-
posed temperature gradient during MD simulations. In the
method described by Müller-Plathe �6�, instead of imposing
a temperature gradient, a heat flux transfer is imposed on the
system and the resulting temperature gradient is calculated.
The advantage with this approach is that the slowly converg-
ing quantity �heat flux� is imposed on the system and is
therefore known exactly. On the other hand, the temperature
and its gradient are averages calculated over time as well as
over many particles and so they are comparatively better
defined. As a result, the temperature field converges rapidly.
The methodology is briefly described below.

In order to impose a heat flux and to calculate the tem-
perature profile, the simulation cell is divided into N slabs in
the z direction as shown in Fig. 5. The instantaneous local
kinetic temperature �Tk� in slab k is given by

Tk =
1

3nkkB
�
i�k

nk

mivi
2, �8�

where the sum is taken over nk number of atoms in slab k
with masses mi and velocities vi.

The 0 slab is denoted as the cool slab and the N /2 slab as
the hot slab. The hottest �highest kinetic energy� atom in the
cool slab and coolest �lowest kinetic energy� atom in the hot
slab are identified. This hottest atom from the cool slab is
exchanged with the coolest atom in the hot slab. The two
exchanged atoms have the same mass. Hence, this process
amounts to exchanging the velocity vectors of the two par-
ticles. Thus, there is a nonphysical transfer of a quanta of
energy equal to the difference in the kinetic energies of the
two exchanged particles from the cool slab to the hot slab.
Due to this energy transfer, a temperature difference is de-
veloped between the slabs and hence a temperature gradient
is set up in the intervening slabs. The velocities are ex-
changed intermittently after a fixed number of steps, and
after each transfer, the simulation is run for a fixed number
of steps. Exchanging the velocities of two particles of equal
mass in a conservative system maintains the total linear mo-

FIG. 5. Illustration of the subcells or “slabs” used in simulations
of bulk silica and silica nanowire.

MAHAJAN, SUBBARAYAN, AND SAMMAKIA PHYSICAL REVIEW E 76, 056701 �2007�

056701-6



mentum, total kinetic energy, and the total energy constant.
Therefore, the velocity transfer satisfies the conservation
laws but the total angular momentum of the system is not
conserved �6�.

After reaching a steady state, the energy transfer due to
the velocity exchange is exactly balanced by the heat flux in
the opposite direction caused by the thermal conductivity of
the system. The imposed heat flux is a known quantity as it is
equal to the quanta of energy transported by the velocity
exchanges of the particles. The temperature gradient result-
ing in the system during steady state is directly dependent on
the thermal conductivity of the system. The higher the value
of conductivity, the more efficient is the thermal transport
leading to a smaller temperature gradient between the slabs.
Simplifying the relation given in Eq. �7�, the thermal con-
ductivity can be expressed as

	 = −

�
transfers

m

2
�vh

2 − vc
2�

2tLxLy��T/�z
, �9�

where vh and vc represent the velocities of the hot and cold
particles of �identical� mass m that are exchanged. The sum
is taken over all the energy transfers during the simulation
time t. Thus, the numerator gives the total amount of energy
transferred by the velocity exchanges. The simulation cell
considered here is of cubic geometry and Lx and Ly �both
equal to cell length L� denote the lengths of the cell in the x
and y directions, respectively. Hence, the product �Lx�Ly

=L2� is the area perpendicular to the z direction through
which the heat flux is transported. Thus, we can see from Eq.
�9� that the only unknown quantity on the right-hand side is
the temperature gradient which is determined as an ensemble
average.

Müller-Plathe �6� used this nonequilibrium approach to
determine the thermal conductivity of monatomic Lennard-
Jones �LJ� fluid. Bedrov et al. �7� used the approach to de-
termine the conductivity of systems with holonomic con-
straints such as n-butane and water with slight modification
consisting of use of multiple thermostats for constant tem-
perature simulations. In all these simulations, the systems
under consideration were molecular fluids. The approach
does not appear to have been applied to solid systems and
hence its validity and efficiency in determining the thermal
conductivity of solids �in which, by their very definition, the
atoms are comparatively constrained in motion� needs to be
verified. A system consisting of bulk amorphous silica was
studied to verify the applicability of the Müller-Plathe ap-
proach to solids before we applied the technique to study
silica nanowire and nanoparticle systems. The simulation cell
consisted of 600 atoms �200 SiO2 formula units� with peri-
odic boundary conditions applied in all three directions to
simulate the bulk system.

B. Cubic simulation cell

The bulk amorphous phase of silica was prepared accord-
ing to the procedure outlined in the literature �14,17,18�. The
system was heated up to 5000 K for 50000 steps to obtain

the liquid state. This liquid was cooled in steps of 100 K
down to room temperature �300 K� using a cooling rate of
4.7�1012 K/s. Periodic boundary conditions were applied
in all three directions. To determine the thermal conductivity,
six different frequencies for velocity exchanges were at-
tempted. This is necessary as it is difficult to know a priori
the impact of exchange frequency on the resulting accuracy.
It was observed in the literature �6,7� that the optimal ex-
change frequency was different for different systems. Fur-
ther, for each system there was a range of exchange frequen-
cies over which the steady state was reached faster and
therefore conductivity estimations converged quicker. In this
work, for bulk silica, velocity exchanges at every 10, 50,
100, 200, 500, and 1000 steps were carried out. The effect of
the exchange intervals on the various factors such as attain-
ment of uniform temperature gradient and convergence of
conductivity values were studied. The simulations were car-
ried out up to 1 ns as it was found that this time was suffi-
cient to attain a steady-state heat flow for all but the lowest
of the exchange frequencies mentioned above.

The temperature gradient as a function of the exchange
frequency is shown in Fig. 6. The temperature gradient de-
creased with increasing time intervals �or decreasing ex-
change frequency�. This was expected as Eq. �9� indicates a
smaller amount of energy transfer with smaller number of
exchanges over a given simulation time t. Since the thermal
conductivity is a constant, the denominator in Eq. �9� would
increase correspondingly with an increase in the exchange
frequency. For a given exchange frequency, the velocity ex-
change was carried out independently in the coordinate di-
rections �x, y, or z� over some of the intervals to study
whether it affected the resultant thermal conductivity value.
No such dependence was observed as was expected for a
amorphous system. It was seen that for the very high ex-
change frequency of once every 10 time steps, the tempera-
ture gradient was relatively large. The system temperature
was seen to increase steadily, reaching up to 340 K by the
end of 1 ns. Hence, the system could no longer be main-
tained at a constant temperature of 300 K over the entire
duration of the simulation. This indicated that the perturba-
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FIG. 6. Effect of exchange frequency on the temperature gradi-
ent in bulk silica.
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tion to the system was too large and the system did not relax
to a steady state instantaneously. It should be noted that dur-
ing the exchange process, in all the cases, the simulations
were on an NVE �constant energy� ensemble and not on an
NVT �constant temperature� ensemble. Hence, the tempera-
ture was not maintained at 300 K by using a heat bath or a
thermostat. However, since during the exchange process, the
system is perturbed from its equilibrium only slightly, it
would not change the overall temperature significantly; it is
expected that the system temperature would fluctuate around
300 K. This was indeed the case for all the exchange inter-
vals except at the exchange frequency of 10 time steps, in-
dicating that the induced perturbation was unacceptably
large.

Figure 7 shows the thermal conductivity calculated using
Eq. �9� as a function of the simulation length. From the fig-
ure, it is clear that for larger values of exchange frequencies
�i.e., lower time intervals between exchanges�, the conver-
gence was better. This can be explained by the fact that
larger exchange frequencies cause greater temperature gradi-
ent �as seen in Fig. 6� and flux transfer, providing better
statistics for a given length of the simulation. On the other
hand for lower exchange frequencies �i.e., higher time inter-
vals between exchanges� the convergence characteristics
were poorer. Too high a frequency, though, would create a
nonlinear response and Eq. �9� can no longer be used with
accuracy. This was the case for the exchange interval of 10
time steps.

The thermal conductivity values calculated by averaging
over different individual runs are listed in Table I. These runs
included different starting velocities and possibly indepen-
dent exchange of heat flux in the coordinate directions. All
values were averaged over time and over the coordinate di-
rections. All the simulations were carried out at 300 K, un-
less otherwise stated. The conductivity values ranged from
0.741 W/mK to 0.818 W/mK for velocity exchange inter-
vals of 50, 100, 200, and 500 time steps. As the exchange
interval increased to once every 1000 time steps, it was ob-
served that the conductivity did not converge smoothly; fluc-
tuations in conductivity could be observed until the very end
of the simulation.

The value of 0.661 W/mK for exchange steps of 1000
listed in Table I was an average calculated over the second
half of the steps where the conductivity value appeared to
fluctuate about the mean shown in Fig. 7. This indicates that
for this and higher exchange time intervals, longer simula-
tion lengths are needed to achieve convergence. The experi-
mental estimate of thermal conductivity of bulk silica at
300 K reported in the literature is 1.4 W/mK �31�. The value
obtained using MD simulations through Green-Kubo corre-
lations reported in the literature is 1.96 W/mK �14� and us-
ing nonequilibrium MD is approximately 1.2 W/mK �12�.
These values in the literature obtained using MD simulations
are approximately ±15–40 % different from the experimen-
tal value. Clearly, the results reported here underestimate the
thermal conductivity by nearly 50% of the experimental
value. One factor that may have contributed to the inaccu-
racy in the estimated conductivity is small size of the simu-
lation system. This observation is consistent with the earlier
cited comment from Ref. �13� regarding the likely depen-
dence of the accuracy of bulk simulation results on the cell
size. To study if the size of the system was a cause, larger
systems would need to be simulated. However, larger sys-
tems lead to greater computational expense. Alternatively,
orthorhombic simulation cells with the cell being longer in
one of the three orthogonal directions may be used with the
same number of atoms as in the cubic cell simulations to
estimate the thermal conductivity along the longer dimen-
sion. Such bulk simulations in an orthorhombic cell are pre-
sented in the next section.

C. Orthorhombic simulation cells

The bulk amorphous silica in an orthorhombic cell was
prepared using the same procedure as outlined for bulk silica
in a cubic cell. The system was heated at 5000 K for 50000
steps to obtain the liquid state. This liquid was cooled in
steps of 100 K down to room temperature �300 K� using a
cooling rate of 4.7�1012 K/s. Periodic boundary conditions
were applied in all three directions. To study the effect of the
aspect ratio, five different systems were prepared with the
longer direction, chosen to be 3, 5, 7, 9, and 11 times the
length of the other two directions. A schematic diagram
showing the relative sizes of these systems is shown in Fig.
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FIG. 7. Thermal conductivity of bulk silica estimated as a func-
tion of simulation time.

TABLE I. Thermal conductivity of bulk silica calculated for
various velocity exchange intervals.

Velocity exchange frequency
�time steps�

Thermal conductivity
�W/mK�

10 0.877a

50 0.818

100 0.755

200 0.781

500 0.741

1000 0.661b

aToo large perturbation; system temperature increased.
bLarge fluctuations, steady state not observed.
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8. It should be noted that as the relative aspect ratio of the
simulation cell was increased, for the same number of atoms,
the cross-sectional area was reduced as indicated in Fig. 8.
All the five systems were prepared independently using the
same equilibration procedure mentioned above. During the
production runs on each of these systems, three different
velocity exchange frequencies were used. Based on the ex-
perience of the bulk simulations on cubic cells, the exchange
frequencies of once every 50, 100, and 200 time steps were
used and the simulations were carried out for a duration of
1 ns. The thermal conductivity values calculated by averag-
ing across the different exchange frequencies over the dura-
tion of the simulation �in each case� are shown in Table II.
For convenience of comparison, the cubic cell results are
also included in the table. It can be seen that in all cases the
orthorhombic cells yield a significantly higher thermal con-
ductivity value along the longer dimension compared to the
cubic cell. Further, increasing the aspect ratio leads to in-
creasing thermal conductivity values that stabilize at
1.2±5% W/mK. These values match very well with the
value of 1.2 W/mK reported by Jund and Jullien �12� calcu-
lated using nonequilibrium MD simulations. Thus, we con-
clude that the method of exchanging velocities to determine
thermal conductivity is valid for bulk solid systems.

V. SIMULATIONS OF SILICA NANOWIRE

An equilibrium sample of a 600-atom system was pre-
pared using the procedure outlined earlier, but with the dif-
ference that the periodic boundary condition was applied to
only one direction. The boundaries in the other two direc-
tions were free. The analogy to the expected equilibrated
system would be that of a cylinder with a length that is much
longer than the diameter of its cross section �i.e., a nano-

wire�. This implies a system that is infinite in only one di-
rection, and when heat transport is set up in that direction,
the energy would most likely flow along that direction rather
than in the other two directions. Hence, in this simulation,
the velocity exchange was set up along the axis of the nano-
wire. The temperature gradient was determined along the
axis by dividing the system into N slabs along the wire axis.
The cool and hot slabs �slab 0 and slab N /2, respectively�
were defined as earlier and the highest kinetic energy particle
from the 0 slab was exchanged with lowest kinetic energy
particle from N /2 slab. Thus, a linear heat transport was
setup along the periodic direction and therefore Eq. �9� can
be used to determine the thermal conductivity. Figure 1�a�
shows an equilibrated 600-atom nanowire system obtained
with periodicity enforced in one direction. The larger �dark
or blue-colored in the figure� atoms are silicon and the
smaller �light or green� atoms are of oxygen. For clarity, the
bonds between the atoms are not shown here.

To estimate the conductivity of this system, the cross-
sectional area in the denominator of Eq. �9�, across which
heat transport occurs, needs to be modified. As periodic
boundary conditions are no longer applied in the directions
orthogonal to the transport direction, the system assumes a
shape that best minimizes its energy and the resulting cross
section is no longer a square. The resulting equilibrated sys-
tem is approximately a cylinder as seen in Fig. 1�a�. How-
ever, the cross section was not circular and the surface was
not smooth leading to a challenge in defining the cross sec-
tional area in Eq. �9�. To overcome this problem, an effective
circular cross section through which heat flow may be
thought to occur was determined as follows. As the cross
section was not symmetrical, the end-to-end distances be-
tween two atoms along the two directions were different.
Therefore, the farthest distances of atoms in the two free
directions were calculated and their mean value was used as
the diameter of the effective circle �davg� through which heat
transport occurs. Thus, Eq. �9� is modified for the present
system as

	 = −

�
transfers

m

2
�vh

2 − vc
2�

t�
davg
2

4
	��T/�z

. �10�

After the equilibration phase, the nanowire system was
subjected to 1000000 steps �1 ns� of production run using a
NVE ensemble and the velocity exchanges were carried out
at regular, prespecified time-step intervals. Based on the ex-
perience of simulations of the bulk system in Sec. IV, ex-
change time intervals of 50, 100, 200, 500, and 1000 steps
were chosen for one direction. In order to confirm that the
calculated conductivity was not affected by the chosen direc-
tion, an equilibrated sample was prepared independently in
two different directions and similar simulations were carried
out for exchange intervals of 50, 100, and 500 time steps. It
should be noted that as the system was amorphous, the cal-
culated thermal conductivity values should not be affected by
the direction in which periodicity was applied. This was con-
firmed in the results obtained for simulations in the different

FIG. 8. Schematic illustration of the relative sizes of the ortho-
rhombic simulation cells.

TABLE II. Thermal conductivity of bulk silica using orthorhom-
bic simulation cells.

Simulation cell dimensions
�Å�

Thermal conductivity
�W/mK�

20.86�20.86�20.86 �z0=x0=y0� 0.778

43.38�14.46�14.46 �z1=3x1=3y1� 1.039

60.98�12.20�12.20 �z2=5x2=5y2� 1.099

76.31�10.90�10.90 �z3=7x3=7y3� 1.271

90.23�10.03�10.03 �z4=9x4=9y4� 1.182

103.15�9.38�9.38 �z5=11x5=11y5� 1.216
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directions. It was observed that 1 ns of simulation time was
sufficient to reach steady state for all exchange time inter-
vals. The temperature gradient was determined as an en-
semble average as before.

The temperature gradient obtained for various velocity
exchange frequencies is shown in Fig. 9. As in the case of
bulk silica simulations presented earlier, the temperature gra-
dient decreased with decreasing exchange frequency for a
given simulation time t. This can be explained as before
using Eq. �10�. The magnitudes of the gradients were com-
parable to those obtained in the bulk simulations. The gradi-
ents in simulations of different directions followed a similar
pattern. For brevity, we present here only the results for gra-
dients obtained in one of the directions �Fig. 9�.

The thermal conductivity calculated using various ex-
change frequencies as a function of simulation time is shown
in Fig. 10. The exchange intervals of 50, 100, and 200 dem-
onstrated smooth convergence and a linear response. For the
case of the time interval of 500 steps, in one of the directions
�say, x�, the estimated conductivity exhibited fluctuations at
the start before it converged to a steady value. However, the

convergence was smooth in the other direction �y� for the
same interval. This can be clearly seen from the thermal
conductivity plots for both the directions, in the case of ex-
change interval of 500 steps, in Fig. 10. Unlike in bulk simu-
lations on cubic cells, the case corresponding to the largest
exchange time interval of 1000 steps also demonstrated a
linear behavior and the thermal conductivity value converged
smoothly.

The thermal conductivity values, averaged over time and
over both directions, obtained using different velocity ex-
change frequencies are listed in Table III. The thermal con-
ductivity values using exchange intervals in the range 50–
1000 time steps varied between 1.256 W/mK to 1.589
W/mK. For the case of exchange interval of 500 time steps,
the conductivity value listed in Table III was calculated over
a period selected near the end of the simulation, after the
conductivity converged to a steady value. The calculated
mean thermal conductivity value for silica nanowire over all
the exchange frequencies was 1.435 W/mK.

The estimated mean thermal conductivity for the silica
nanowire over all exchange frequencies is within ±2% of the
experimental value reported in Ref. �31�. The estimated ther-
mal conductivity is also approximately 20% higher com-
pared to the bulk amorphous silica thermal conductivity es-
timated in this study, as well as that reported in the literature
using MD simulations �12�. We next turn our attention to
determining the thermal conductivity of a silica nanoparticle
or cluster, in the following section.

VI. SIMULATIONS OF SILICA NANO PARTICLE

The technique described above needs to be modified in
order to simulate nanoparticles or clusters consisting of silica
molecules. This was necessitated by the fact that a cluster
has no periodicity in any direction. Due to there being no
periodicity in any of the directions, the equilibrium structure
assumed a shape which best minimized its energy—an ap-
proximate sphere. Figure 1�b� shows an equilibrated 600-
atom cluster of silica �200 SiO2 formula units� prepared
using the procedure outlined in Sec. II. The larger �dark or
blue- colored in the figure� atoms are silicon and the smaller
�light or green� atoms are oxygen. In the following discus-
sion, the terms nanoparticle and clusters are used equiva-
lently.

Since for a nanoparticle there are no preferred Cartesian
coordinate directions, it is not meaningful to establish heat
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TABLE III. Thermal conductivity of silica nanowire estimated
using various velocity exchange intervals.

Velocity exchange frequency
�time steps�

Thermal conductivity
�W/mK�

50 1.491

100 1.307

200 1.589

500 1.530

1000 1.256
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transport along the Cartesian directions. Furthermore, the
cluster cannot be divided into planar slabs of uniform cross
section. Therefore, in the following, the earlier described
method was modified to induce radial heat transport. The
equilibrated nanoparticle shown in Fig. 1�b� was observed to
possess the shape of a stretched sphere rather than that of a
regular sphere. Hence, a sphere totally inscribed in the nano-
particle was considered and heat transport was established in
this sphere using the method of velocity exchange. For a
spherical shape, the natural mode of heat transfer would be
in the radial direction given a temperature difference be-
tween the center and surface of the sphere. Continuum de-
scriptions of radial heat conduction in a sphere is common in
introductory heat transfer textbooks �32�. The model for heat
transfer in a hollow sphere is as shown in Fig. 11.

Due to the difference in temperatures at the two radii r1
and r2, there would be a heat flow along the direction of the
negative temperature gradient. The equations governing the
heat conduction in the hollow sphere are as follows:

qr =
4
	�Ts1 − Ts2�
�1/r1� − �1/r2�

, �11a�

qr �
�4
r2�	�Ts1 − Ts2�

r2 − r1
� �4
r2�	

dT

dr
, �11b�

where Ts1 and Ts2 are the temperatures of the surfaces at radii
r1 and r2, respectively. Using this equation, the resultant flux
passing through the two surfaces of radii r1 and r2 can be
calculated, given the temperatures at the two surfaces and the
thermal conductivity. If a surface of radius r, in between the
two surfaces taking part in the exchange process, is chosen
such that r is the geometric average of the two radii r1 and
r2, then it can be assumed that the heat flux passes through
this average surface area. Further, assuming linear behavior,
the ratio of temperature difference at the two radii to the
difference between the radii would represent the derivative
of the temperature with respect to the radius. Considering
this, Eq. �11a� can be approximated as given in Eq. �11b�.
From Eqs. �11� it can be seen that for a constant qr, the
temperature varies inversely with the radius r. This relation-
ship is expressed in Eq. �12a� where C1 and C2 are constants,
from which it can be seen that dT /dr varies inversely with
the square of the radius. Thus from Eq. �11b� and Eq. �12a�,
we obtain a relationship for the heat flux as shown in Eq.
�12b�,

T =
C1

r
+ C2 ⇒

dT

dr
= −

C1

r2 , �12a�

qr � − �4
�	C1. �12b�

Equation �12b� gives the resultant heat flux given a tem-
perature gradient �specifically, given slope C1 of the curve T
vs 1/r�. This continuum model of the temperature distribu-
tion will now be imposed on the results of the MD simula-
tion to extract the thermal conductivity.

As discussed earlier in the planar slab model, in MD, it is
convenient to impose a heat flux and determine the resulting
temperature gradient. To do this, the cluster was divided into
concentric shells as shown in Fig. 11. Using the terminology
of the planar model, the shell at radius r1 was the cool shell
�say, shell 0� and the shell at radius r2 was the hot shell �shell
N�. In other words, the highest kinetic energy particle from
shell 0 was exchanged with lowest kinetic energy particle
from shell N. Transferring this quanta of energy between the
two shells sets up a temperature gradient across the two sur-
faces. The temperature in each shell was determined using
Eq. �8� as described earlier. The equation governing the ra-
dial heat transfer process in the nanoparticle can be written in
a manner similar to Eqs. �9� and �10� as

	 = −

�
transfers

m

2
�vh

2 − vc
2�

t�4
�C1
, �13�

where, as described earlier, vh and vc are the velocities of
hottest and coldest particles, respectively, and t is the simu-
lation time. The temperature gradient was determined as the
ensemble average and Eq. �13� was then used to determine
the thermal conductivity in this model. It should be noted
that the factor of 2 is missing in the denominator of Eq. �13�,
unlike in Eqs. �9� and �10�. This factor of 2 arose because of
the symmetry in the arrangement of the earlier systems.
Therefore, the energy would flow from the hot slab to the
cool slab on either side of the hot slab, effectively doubling
the area available for transport. But in the radial heat flow
model proposed here, that was not the case.

Although Eqs. �11�–�13� were developed for heat conduc-
tion in a hollow sphere, it is applied to the nanoparticle sys-
tem considered here in the limit of the radius r1 approaching
zero. Therefore, the shell of radius r1 was chosen as the core
of atoms and the shell of radius r2 was chosen as the outer-
most shell that inscribed a sphere. The inscribed sphere was
divided into shells such that there were roughly the same
number of atoms in each of the shells. This necessitated us-
ing a variable shell thickness due to the nature of the geom-
etry of the nanoparticle as seen in Fig. 1�b�, but enforcing
roughly equal number of atoms in the shells assured that the
relative change in the energy and temperature of the two
shells remained comparable. Finally, in order to verify
whether the direction of the velocity exchange affected the
thermal conductivity values, identical simulations were per-
formed for a given exchange frequency with only the direc-
tion of the exchange process reversed. In other words, the

FIG. 11. Radial heat transport one-dimensional conduction
model �left� and nanoparticle divided into concentric shells �right�.
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highest kinetic energy particle from shell N was exchanged
with the lowest kinetic energy particle from shell 0.

The equilibrated system was simulated over 2000000 time
steps �2 ns� of production run in the NVE ensemble and the
velocity exchange was carried out at fixed intervals. As be-
fore, the simulations were carried out with different ex-
change frequencies to ascertain a range of frequencies yield-
ing linear response and smooth convergence characteristics.
Velocity exchange intervals ranging from 100 time steps to
1000 time steps were attempted. It was observed that for the
interval of 100 steps, the temperature gradient was relatively
high and the perturbation of the system temperature due to
the exchange was large. This behavior was similar to, but
less pronounced than, that observed in bulk cubic cell simu-
lations corresponding to a time interval of 10 time steps. On
the other hand, for higher exchange intervals �such as 1000
steps�, the response was not linear over the chosen simula-
tion time.

The temperature gradient that was obtained for different
exchange intervals is shown in Fig. 12. For reasons of clarity
�so the trends may be clearly observed�, the gradients corre-
sponding to only some of the exchange frequencies are
shown in Fig. 12. As in earlier simulations, the overall trends
of decreasing temperature gradient with decreasing exchange
frequency �or increasing time interval� was repeated to a
large extent. But, unlike in the bulk case, the fits of tempera-
ture were accurate only to an arbitrary constant. For ex-
ample, the temperature gradient corresponding to the ex-
change interval of 300 steps �not shown in Fig. 12� was not
observed to lie between those of exchange intervals of 200
and 400 steps. However, the value for the slope of the cor-
responding temperature line was appropriately placed be-
tween those corresponding to intervals of 200 and 400 steps.
These deviations can be explained by the fact that the nature
of heat transfer in the nanoparticle is slightly different from
that in the bulk or nanowire case. In the bulk and nanowire
systems, due to periodicity, the energy could flow from the
hot slab to the cold slab in both the positive and negative
directions and hence the central slab acted as a midplane in
the cell and the flow from both sides converged there. There-

fore, no matter what exchange frequency was used, the heat
transport always ensured that the gradient passed through the
midplane indicating a bidirectional flow. But in the case of
the nanoparticle, the induced radial transport was unidirec-
tional and the surface area through which heat passed was
spherical rather than planar. Thus, the linear fit to the tem-
peratures did not cross through a common point, but they
retained their dependence of the slope on the exchange inter-
val in the same manner as earlier.

The calculated thermal conductivity as a function of simu-
lation length for the exchange intervals presented in Fig. 12
is shown in Fig. 13. As mentioned earlier, for the case of
exchange interval of 100 steps, the perturbation was rela-
tively high and for the interval of 1000 steps, the response
was not linear. It can be seen in Fig. 13 that as the exchange
interval increased to 800 steps and beyond, the estimated
thermal conductivity displayed greater fluctuations.

The values of thermal conductivity for different exchange
intervals are presented in Table IV. The values for all ex-
change frequencies were averaged over the simulation time,
excluding the initial 10% of time steps where significant
fluctuations appear and after which the system reaches steady
behavior. Considering the range of intervals from 100 steps
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FIG. 12. Effect of exchange frequency on the temperature gra-
dient in silica nanoparticle.
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FIG. 13. Thermal conductivity of silica nanoparticle as a func-
tion of simulation time.

TABLE IV. Thermal conductivity of silica nanoparticle esti-
mated using various velocity exchange intervals.

Velocity exchange frequency
�time steps�

Thermal conductivity
�W/mK�

100 0.675

200 0.621

300 0.589

400 0.500

500 0.555

600 0.665

700 0.562

800 0.602

900 0.536
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to 900 steps over which the observed convergence was
smooth and response linear, the calculated thermal conduc-
tivity of the silica nanoparticle ranged from 0.5 W/mK
to 0.675 W/mK. Averaging over all the exchange intervals
between 100 to 900 steps, the mean thermal conductivity of
the 600-atom silica nanoparticle was estimated to be
0.589 W/mK. This value is significantly less ��58% � than
the bulk experimental value �31�, and �50–60 % less than
the average thermal conductivity of bulk silica and silica
nanowire estimated in this work. Similar simulations were
carried out at chosen exchange intervals �100 to 500 time
steps� with only the direction of heat exchange reversed. The
average thermal conductivity was �16% higher than the av-
erage of the values listed in Table IV. In general, the reverse
simulations showed values which were �5–10 % higher
than the corresponding values listed in Table IV. However,
for one such simulation using exchange interval of 300 time
steps the thermal conductivity estimate was �24% higher
when the direction of heat exchange was reversed.

Further, to study the effect of hollow sphere geometry, an
independent set of simulations was carried out �not presented
here� in which the inner shell taking part in the exchange
process was not the core shell, but an arbitrary shell in the
middle of the nanoparticle. This geometry, which excluded
the atoms inside the shell of radius r1, was similar to that
shown in Fig. 11. The outermost shell was the same as
above. The average thermal conductivity value obtained
through simulations with varying exchange intervals ranging
from 100 to 1000 steps was 0.439 W/mK. This can be ex-
plained by the fact that some of the energy that was being
exchanged might have been transported to the inner core of
atoms which were not considered in the determination of the
temperature gradient. The thermal conductivity value
changed by at most 2% due to the reversal of the direction of
exchange.

VII. DISCUSSION

A major goal of the present study was to develop a pro-
cedure for estimating the thermal conductivity of nanowires
and nanoparticles, and to compare the values generated by
the developed procedure against those reported in the litera-
ture for bulk silica. From the thermal conductivity values
obtained for the nanoparticle, it is evident that we see a sig-
nificant ��50–60 % � reduction in the thermal conductivity
of silica from bulk and nanowire systems to the nanoparticle
system. One of the explanations for this phenomenon may be
that phonon propagation is limited by the size of the nano-
particle. In other words, the phonon mean free path is limited
by the size of the cluster. This affects the heat flow process
resulting in the reduction of the thermal conductivity of the
nanoparticle. For amorphous bulk silica, the phonon mean
free path �MFP� has been reported �33� to be equal to
�8.1 Å. This MFP value is of the same order of magnitude
as the size of the 600-atom nanoparticle studied here �ap-
proximately equal to its radius�. However, it has been argued

by Maiti et al. �34� that the parameter of relevance in nano-
particles may not be the phonon mean free path, but the total
number of phonon-phonon scattering events that take place
in the system. They provide a simple formula based on the
total number of atoms and the simulation time to estimate the
total number of scattering events in a given system for the
given simulation time. But, it is difficult to judge whether the
number thus determined is relatively large or small as the
number of scattering events required to establish local equi-
librium in a given system is unknown. Research is currently
ongoing to estimate the variation of the simulated nanopar-
ticle conductivity with larger sized particles.

VIII. SUMMARY

In the present study, the thermal conductivity values of
600-atom amorphous bulk silica, silica nanowire, and silica
nanoparticle were estimated by using equilibrium MD simu-
lations and by using a technique inspired by Müller-Plathe
�6�. Equilibrium MD simulations using Green-Kubo relations
to determine thermal conductivity of nanoparticles showed
large oscillations in the estimated values. This approach may
not be suitable for nanoparticles as the size and type of sys-
tem constrain the persistence of energy flux in any direction.
The Müller-Plathe nonequilibrium method, used earlier for
molecular fluids �6,7�, was applied to simulate bulk, nano-
wire, and nanoparticle of silica. Initially, a cubic simulation
cell with periodicity in all three directions was attempted and
was found to underestimate the thermal conductivity relative
to reported experimental values for bulk silica. Hence, bulk
simulations with orthorhombic simulation cells were per-
formed. As the aspect ratio was increased sequentially the
obtained thermal conductivity reached a stable value of
1.2±5% W/mK. This mean value is identical to that re-
ported by Jund and Jullien �12� obtained using nonequilib-
rium MD simulations. The estimated value is �15% less
than experimentally measured values for bulk silica �31�.
Silica nanowire systems with periodicity in the axial direc-
tion were prepared to study heat transport along the axial
direction. The mean thermal conductivity value of this sys-
tem over all velocity exchange intervals was estimated to be
1.435 W/mK. Inspired by the Müller-Plathe technique, a
method of dividing a spherical cluster system into concentric
shells to estimate thermal conductivity in nanoparticles was
proposed. The simulations on such a system indicated that
the mean thermal conductivity value for a 600-atom silica
nanoparticle over all exchange intervals was 0.589 W/mK.
This value was approximately 58% less than the experimen-
tal value for bulk silica, and approximately 50% less than the
bulk value and 60% less than the nanowire value estimated
in this study.
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